SKKN Rèn luyện kỹ năng giải một số dạng toán về phân số từ cơ bản đến nâng cao trong chương trình Toán Lớp 4,5
Toán có liên quan đến phân số chiếm một số lượng đáng kể trong các bài toán có lời văn. Loại toán này có nhiều ứng dụng trong thực tế. Song khi giải các bài toán này học sinh còn gặp nhiều lúng túng mơ hồ và sai lầm; khó tìm ra hướng giải quyết và thường nhầm lẫn từ dạng này sang dạng khác.
Nếu không xác định cho học sinh những kiến thức cơ bản ban đầu vững chắc thì học sinh sẽ không giải quyết được những bài toán ở dạng cơ bản (đối với học sinh trung bình) và nâng cao lên (đối với học sinh khá giỏi).
Bạn đang xem tài liệu "SKKN Rèn luyện kỹ năng giải một số dạng toán về phân số từ cơ bản đến nâng cao trong chương trình Toán Lớp 4,5", để tải tài liệu gốc về máy hãy click vào nút Download ở trên
Tóm tắt nội dung tài liệu: SKKN Rèn luyện kỹ năng giải một số dạng toán về phân số từ cơ bản đến nâng cao trong chương trình Toán Lớp 4,5

SÁNG KIẾN KINH NGHIỆM RÈN LUYỆN KỸ NĂNG GIẢI MỘT SỐ DẠNG TOÁN VỀ PHÂN SỐ TỪ CƠ BẢN ĐẾN NÂNG CAO TRONG CHƯƠNG TRÌNH TOÁN LỚP 4,5 PHẦN I: MỞ ĐẦU 1. Lý do: Toán có liên quan đến phân số chiếm một số lượng đáng kể trong các bài toán có lời văn. Loại toán này có nhiều ứng dụng trong thực tế. Song khi giải các bài toán này học sinh còn gặp nhiều lúng túng mơ hồ và sai lầm; khó tìm ra hướng giải quyết và thường nhầm lẫn từ dạng này sang dạng khác. Nếu không xác định cho học sinh những kiến thức cơ bản ban đầu vững chắc thì học sinh sẽ không giải quyết được những bài toán ở dạng cơ bản ( đối với học sinh trung bình ) và nâng cao lên ( đối với học sinh khá giỏi ). 2. Nhiệm vụ: Trong khuôn khổ của đề tài này, nhiệm vụ chính là đề ra một số giải pháp nhằm khắc phục những khó khăn, sai lầm của học sinh khi giải toán có liên quan đến phân số. Đồng thời cũng nêu lên một số kinh nghiệm của bản thân trong việc bồi dưỡng học sinh khá giỏi về phương pháp giải các loại toán này ở dạng nâng cao. 3. Phương pháp tiến hành: - Sử dụng phương pháp thống kê, mô tả là chủ yếu. - Thống kê tình hình học sinh sai lầm khi giải loại toán này ở đầu năm học. Sau khi áp dụng phương pháp giải toán theo kinh nghiệm của bản thân thì thống kê mức đô đạt được. - Mô tả các dạng toán, thực trạng và giải pháp khắc phục. - Trình tự thực hiện: + Lên đề cương chi tiết dựa vào cấu trúc qui định. + Xác định một số bài toán dạng cơ bản về phân số trong chương trình toán lớp 4,5 và một số bài toán nâng cao theo từng mức. + Nêu những sai lầm thường gặp đối với học sinh. -Đưa ra các bài toán mẫu tương tự để học sinh làm đối chứng so sánh nhận xét xác định dạng. + Đối với học sinh khá giỏi đề ra những bài toán nâng cao theo từng mức để hướng dẫn học sinh giải quyết. + Đề ra các giải pháp khắc phục tương ứng ( dựa vào những kinh nghiệm của bản thân). 4. Cơ sở và thời gian tiến hành: Đề tài này được rút ra trên cơ sở đúc rút kinh nghiệm của nhiều năm dạy lớp năm và kết quả đã đạt được của từng năm. Đề tài được thực hiện ở lớp khoảng 4 năm trở lại đây. PHẦN II. KẾT QUẢ. A. RÈN LUYỆN KỸ NĂNG GIẢI MỘT SỐ DẠNG TOÁN CƠ BẢN VỀ PHÂN SỐ CHO HỌC SINH. Toán về phân số là một chủ đề quan trọng trong chương trình. Vì thế giải thành thạo các bài toán về phân số là yêu cầu đối với tất cả các em học sinh ở cuối bậc tiểu học. I. Dạng thứ nhất: Dạy tìm phân số của một số. 1. Mô tả: Ví dụ 1.1: Một hình chữ nhật có chiều dài 35 cm chiều rộng bằng 5 2 chiều dài. Tính diện tích hình chữ nhật đó ? Ví dụ 2.1: Một hình chữ nhật có chiều rộng 20 cm và bằng 5 2 chiều dài. Tính diện tích hình chữ nhật đó ? 2.Thực trạng những sai lầm của học sinh: Qua nhiều năm dạy học cho học sinh trong lớp ở một trường thuộc vùng kinh tế khó khăn. Tôi thấy học sinh thường hay giải một số dạng toán về phân số một cách máy móc, phương pháp không rõ ràng, hay nhầm lẫn từ dạng này sang dạng khác. Có thể đối với bài toán 1.1 nếu học sinh học kỹ sẽ giải quyết dễ dàng. Nhưng sang đến bài 2.1 học sinh sẽ nhầm lẫn là làm như bài toán 1.1. tức là học sinh tìm chiều dài hình chữ nhật: 20 x 5 2 . Đó là sai cơ bản mà tôi thường gặp rất nhiều ở học sinh khi giải các bài toán có dạng trên. Cụ thể: Tổng số học sinh Số học sinh giải đúng Số hoc sinh sai lầm Kết quả sau áp dụng phương pháp này 28 8 20 25 3. Giải pháp khắc phục: Để giải quyết sai lầm này một cách triệt để, để học sinh không nhầm lẫn từ 2 dạng trên khi dạy tôi chia bảng ra làm hai cột và ghi hai bài toán trên cùng một lúc. Từ đó cho học sinh nhận xét, so sánh tìm ra chỗ giống nhau và khác nhau để hướng học sinh tìm ra chỗ nhầm lẫn thường gặp. Bài 1.1: bài 2.1: - Xác định chiều rộng bằng - chiều rộng cũng bằng 5 2 chiều dài. Tức là chiều rộng 2 phần chiều dài thì chiều rộng cũng và chiều dài 5 phần. bằng 2 phần và chiều dài là 5 phần. Đây là điểm giống nhau của hai bài toán trên nên khi giải học sinh thường nhầm lẫn từ bài này sang bài khác. Vì vậy, giáo viên cần xác định kiến thức cụ thể. - Tìm điểm khác nhau của 2 bài toán trên dẫn đến hai cách giải khác nhau: Bài 1.1 Bài 2.1 Cho chiều dài 35 cm tức là chiều Cho chiều rộng bằng 5 2 chiều dài dài gồm 5 phần. Tìm chiều rộng và bằng 20 cm.Tìm chiều tức là tìm 2 phần. dài tức là tìm 5 phần biết vẽ sơ đồ: chiều rộng 2 phần là 20 cm. chiều dài chiều dài chiều rộng chiều rộng Như vậy chiều rộng 2 phần cần Như vậy bài toán này cần tìm tìm chính là lấy 35:5 tìm 1 phần chiều dài tức là tìm 5 phần khi biết rồi nhân 2 ta có chiều rộng. chiều rộng 2 phần là 20 cm, Cách làm: chiều rộng hình chữ chính là: nhật: 35 x 5 2 = 14 (cm). 20 : 2 x 5 = 50 (cm). hay: 35 : 5 x 2 = 14 (cm). hay: 20 : 5 2 = 50 (cm) Như vậy ở bài 2.1 này không thể làm như bài 1.1 là tìm chiều dài lấy 20 x 5 2 được. Đây là sai lầm lớn mà học sinh thường mắc phải. *Tóm lại: Kiến thức cần khắc sâu cho học sinh trong hai bài toán này là: Bài toán 1.1: Cho biết giá trị mẫu số, tìm giá trị tử số. Nên khi tìm giá trị tử số lấy số đã cho chia cho mẫu số nhân tử số. Bài toán 2.1: Cho biết giá trị tử số và tìm giá trị mẫu số. Nên khi tìm giá trị mẫu số lấy số đã cho chia cho tử số nhân cho mẫu số. II. Dạng thứ hai: Tìm hai số khi biết tổng và tỷ số của chúng. 1. Mô tả: Ở dạng toán này học sinh cũng thường nhầm lẫn với dạng toán khác. Ví dụ 2.1: Một hình chữ nhật có tổng độ dài chiều dài và chiều rộng là 35 cm. biết rằng chiều rộng bằng 5 2 chiều dài. Tính diện tích hình chữ nhật đó? 2. Thực trạng: Những sai lầm thường gặp là học sinh cứ xem các tổng đã cho là một số nên nhầm tìm số kia lấy tổng nhân cho tỷ số đã cho. Học sinh thường tìm chiều dài: 35 x 5 2 = 14 cm. học sinh nhầm với dạng toán tìm phân số của một số. 3. Giải pháp khắc phục: Khi dạy dạng các toán này cũng cần có bài toán tương tự để học sinh so sánh tìm chỗ khác nhau và thường sai lầm. Ví dụ 2.2: Một hình chữ nhật có chiều dài 35 cm chiều rộng bằng 5 2 chiều dài. Tính diện tích hình chữ nhật đó ? Điểm giống nhau của hai bài toán này là chiều rộng đều bằng 5 2 chiều dài và đều tính diện tích hình chữ nhật. Điều học sinh thấy giống nhau nữa là có độ dài 35 cm, nhưng số đo này là của hai đại lượng khác nhau. Cho học sinh đọc kĩ bài toán và tìm sự khác nhau của hai bài toán. Bài 2.1. Bài 2.2. Tìm chiều dài và chiều rộng khi Tìm chiều rộng dựa vào chiều biết tổng của chiều dài và chiều dài tức là tìm phân số của một số rộng; và tỷ số của chiều rộng bằng Tránh nhầm với dạng bài 2.1. 5 2 chiều dài . Bài toán này giải theo cách: Tìm Bài toán này giải theo cách: hai số khi biết tổng và tỷ số. Tìm phân số của một số. Để tránh nhầm lẫn là học sinh giải hai bài toán này thường giống nhau. Đôi khi bài toán 2.2 lại giải tìm hai số biết tổng và tỷ. Bài 2.1 lại tìm phân số của một số. Cơ sở xác định cho học sinh là: Ở bài toán 2.1 là tìm hai số khi biết tổng và tỷ của chúng. Còn bài 2.2 là tìm một số dựa vào phân số của nó với một số đã cho. Cho nên hai cách trên giải hoàn toàn khác nhau. Giáo viên cần giải hai bài toán cùng một lúc để học sinh xác định cách giải của từng bài tránh nhầm lẫn cách giải của bài này sang cách giải của bài khác. III. Dạng thứ ba: Tìm phân số chỉ một số cụ thể để tìm ra số đó. Ví dụ 3.1: Một cửa hàng bán trong 3 ngày được 1280 kg đường. Ngày thứ nhất bán được 25% số đường đó, ngày thứ hai bán được 45% số đường đó. Hỏi ngày thứ ba bán được bao nhiêu kg đường ? Giải bằng 2 cách: Cách 1. - Học sinh tìm số đường bán ngày thứ nhất. - Tìm số đường bán ngày thứ hai. - Sau đó tìm số đường bán ngày thứ ba bằng cách lấy số đường bán được trừ cho số đường bán 2 ngày (ngày thứ nhất và ngày thứ hai) cách này học sinh tương đối làm được. Cách 2. Tìm phân số chỉ số đường bán ngày thứ ba để rồi tìm ra số đường bán ngày thứ ba là hơi khó, rất nhiều học sinh không giải được. Hướng giải quyết là phải cho học sinh thấy số đường bán trong ba ngày là bao nhiêu phần trăm ? (số đường này là 100 %). Như vậy hai ngày bán được bao nhiêu phần trăm. Học sinh có thề tìm được: 25% + 45% = 70%. Vậy còn bao nhiêu phần trăm là của ngày thứ ba: 100% - 70% = 30%. Đây chính là tìm phân số chỉ số đường bán ngày thứ ba. Vậy ngày thứ ba bán được 30% của 1280kg.Từ đó học sinh sẽ tìm được ngày thứ ba bán được:1280 x 30% hay 1280 : 100 x 30 = 384 kg. Để khắc sâu kiến thức và nhằm nâng cao hơn ta cho bài toán ngược lại để học sinh so sánh và đối chiếu. Ví dụ 3.2: Một cửa hàng ngày đầu bán được 25% số đường trong kho, ngày thứ haibán được 45% số đường trong kho, ngày thứ ba bán được 384 kg thì hết. Hỏi trong kho có tất cả bao nhiêu kg đường? Ơ bài toán này bắt buộc phải đi tìm số đường trong kho có. Tức là phải dựa vào số đường bán ngày thứ ba. Phải hướng cho học sinh thấy được số đường trong kho có là 100%. Như vậy học sinh mới tìm được phân số chỉ số đường bán ngày thứ ba. Cach tìm phân số này giống như bài 3.1: 100% - (25% + 45%) = 30% (phân số thập phân 100 30 ) và 30% tức là phân số chỉ 384kg hay số đường 384kg là 30 phần trong kho 100 phần. Vậy số đường trong kho là: 384 : 30 x 100 = 1280kg. vận dụng cách của bài 3.1 để giải quyết bài này. Hai bài toán này có liên quan với nhau nên khi dạy bài toán 3.1 cần chỉ bài toán 3.2 để học sinh nhận xét rút ra cơ sở giải quyết bài toán. *Tóm lại: Sau khi áp dụng những phương pháp trên khi dạy bài toán liên quan về phân số cho học sinh, tôi thấy học sinh làm được bài tập mà không bị nhầm lẫn ở ba dạng toán trên. Hầu hết các em rất thành thạo khi nhận dạng một bài toán nào đó. Từ những cơ sở trên tôi vận dụng vào bồi dưỡng những học sinh khá giỏi giải toán nâng cao. Trong phạm vi đề tài này tôi chỉ nêu lên một số kinh nghiệm bồi dưỡng học sinh giỏi giải toán tìm 2 số khi biết tổng và tỷ số, hiệu và tỷ số của chúng. B. RÈN
File đính kèm:
skkn_ren_luyen_ky_nang_giai_mot_so_dang_toan_ve_phan_so_tu_c.pdf