Sáng kiến kinh nghiệm Sử dụng sơ đồ đoạn thẳng trong dạy học giải toán cho học sinh Lớp 5
Môn Toán là một môn học trọng tâm góp phần tích cực thực hiện
mục tiêu giáo dục, đào tạo con người toàn diện ở các bậc học. Đặc biệt, bậc
học tiểu học là bậc học nền tảng cho việc hình thành và phát triển nhân cách
con người trong sự nghiệp giáo dục của đất nước.
Ở mỗi lớp, môn Toán có vị trí, yêu cầu, nhiệm vụ khác nhau. Đặc biệt ở
giai đoạn cuối bậc tiểu học, môn Toán có nhiệm vụ tạo cho học sinh cơ sở
để tiếp tục lên bậc trung học, vừa chuẩn bị kiến thức, kĩ năng cần thiết để các
em bước vào cuộc sống lao động. Do đó ở giai đoạn này, việc dạy và học
môn Toán vừa phải quan tâm đến việc hệ thống hóa, khái quát hóa nội dung
học tập, vừa phải đáp ứng những nhu cầu của cuộc sống để học sinh dễ dàng
thích nghi hơn khi vào đời.
Toán lớp 5 củng cố kĩ năng giải toán với các bài toán hợp ( có lời văn )
có đến 3, 4 bước. Cụ thể các dạng toán: “Tìm hai số khi biết tổng ( hiệu ) và
tỉ số của hai số đó”, toán chuyển động đều. Việc dạy học sinh giải tốt các
loại toán trên là một vấn đề đang đề cập tới. Vì ngoài việc củng cố kĩ năng
thực hiện các phép số học cần phải củng cố kĩ năng tiến hành các bước giải
thông qua việc tóm tắt bằng sơ đồ đoạn thẳng. Ngoài ra, thông qua quá trình
tóm tắt và giải các loại toán này còn rèn luyện cho học sinh khả năng diễn
đạt bằng ngôn ngữ nói và viết. Bởi lẽ khi tham gia các loại toán này học sinh
phải huy động toàn bộ tri thức, kĩ năng, phương pháp về giải toán tiểu học
gắn với cuộc sống thực tiễn. Khi học sinh giải được các loại toán điển hình
thì đó là một hoạt động trí tuệ hết sức khó khăn và phức tạp.
Tóm tắt nội dung tài liệu: Sáng kiến kinh nghiệm Sử dụng sơ đồ đoạn thẳng trong dạy học giải toán cho học sinh Lớp 5

SÁNG KIẾN KINH NGHIỆM SỬ DỤNG SƠ ĐỒ ĐOẠN THẲNG TRONG DẠY HỌC GIẢI TOÁN CHO HỌC SINH LỚP 5 I. LÍ DO CHỌN ĐỀ TÀI Môn Toán là một môn học trọng tâm góp phần tích cực thực hiện mục tiêu giáo dục, đào tạo con người toàn diện ở các bậc học. Đặc biệt, bậc học tiểu học là bậc học nền tảng cho việc hình thành và phát triển nhân cách con người trong sự nghiệp giáo dục của đất nước. Ở mỗi lớp, môn Toán có vị trí, yêu cầu, nhiệm vụ khác nhau. Đặc biệt ở giai đoạn cuối bậc tiểu học, môn Toán có nhiệm vụ tạo cho học sinh cơ sở để tiếp tục lên bậc trung học, vừa chuẩn bị kiến thức, kĩ năng cần thiết để các em bước vào cuộc sống lao động. Do đó ở giai đoạn này, việc dạy và học môn Toán vừa phải quan tâm đến việc hệ thống hóa, khái quát hóa nội dung học tập, vừa phải đáp ứng những nhu cầu của cuộc sống để học sinh dễ dàng thích nghi hơn khi vào đời. Toán lớp 5 củng cố kĩ năng giải toán với các bài toán hợp ( có lời văn ) có đến 3, 4 bước. Cụ thể các dạng toán: “Tìm hai số khi biết tổng ( hiệu ) và tỉ số của hai số đó”, toán chuyển động đều. Việc dạy học sinh giải tốt các loại toán trên là một vấn đề đang đề cập tới. Vì ngoài việc củng cố kĩ năng thực hiện các phép số học cần phải củng cố kĩ năng tiến hành các bước giải thông qua việc tóm tắt bằng sơ đồ đoạn thẳng. Ngoài ra, thông qua quá trình tóm tắt và giải các loại toán này còn rèn luyện cho học sinh khả năng diễn đạt bằng ngôn ngữ nói và viết. Bởi lẽ khi tham gia các loại toán này học sinh phải huy động toàn bộ tri thức, kĩ năng, phương pháp về giải toán tiểu học gắn với cuộc sống thực tiễn. Khi học sinh giải được các loại toán điển hình thì đó là một hoạt động trí tuệ hết sức khó khăn và phức tạp. Việc hình thành cho học sinh kĩ năng giải toán bằng phương pháp số học còn khó khăn hơn kĩ năng tính vì những loại toán này là loại toán kết hợp nhiều khái niệm, nhiều quan hệ toán học, đòi hỏi học sinh phải độc lập suy nghĩ. Cũng thông qua giải toán mà học sinh nắm được một số khái niệm về toán học. Qua thực tế giảng dạy cho HS lớp 5, có khoảng 25% - 30% học sinh chưa thành thạo về giải toán có lời văn . Sử dụng sơ đồ đoạn thẳng trong giải toán sẽ giúp học sinh nhớ lâu, bổ sumg những hiểu biết để nắm được các kiến thức trừu tượng , học sinh hứng thú học tập. Chính vì những lí do trên nên tôi mạnh dạn chọn đề tài “Sử dụng sơ đồ đoạn thẳng trong việc giải toán cho học sinh lớp 5”. II. THỰC TRẠNG TRƯỚC KHI THỰC HIỆN CÁC GIẢI PHÁP CỦA ĐỀ TÀI 1. Thuận lợi - Vấn đề giáo dục được toàn xã hội quan tâm. Sự hỗ trợ tích cực về phía nhà trường. Đồ dùng dạy học phục vụ cho những tiết học toán đầy đủ nên học sinh có điều kiện phát huy thành tích học tập. - Trong học toán, học sinh được giáo viên hướng dẫn thường xuyên việc phân tích , tóm tắt đề nhất là hình thành nội dung bằng sơ đồ đoạn thẳng. Học sinh được thực hành tóm tắt đề toán bằng sơ đồ đoạn thẳng trên bảng con, bảng nhóm, bảng lớp, vở. - Sử dụng sơ đồ đoạn thẳng trong giải toán có lời văn sẽ giúp học sinh tích lũy được những hình tượng cụ thể, quan sát để tạo chỗ dựa cho quá trình trừu tượng hóa trong dạy học toán ở tiểu học. - Giúp học sinh thoát khỏi sơ đồ cụ thể của bài tập. - Giúp học sinh có khả năng phân tích tổng hợp, trừu tượng hóa, cụ thể hóa. - Giáo viên tạo cơ hội để học sinh tự phát hiện, tự giải quyết vấn đề, tự chiếm lĩnh kiến thức và phát huy năng lực cá nhân. 2. Khó khăn - Dùng một đoạn thẳng nào đó để thay thế cho một số chưa biết và trên sơ đồ các số bằng nhau phải được biểu diễn bằng các đoạn thẳng bằng nhau nên giáo viên cần lưu ý giúp học sinh tóm tắt bằng sơ đồ cho chính xác và tìm được cách giải thích hợp. - Trí nhớ của các em chưa thoát khỏi tư duy cụ thể nên còn ngại khó khi gặp các bài toán phức tạp. Từ đó dẫn đến kết quả học tập của các em chưa cao. - Một số học sinh gia đình còn khó khăn nên chưa quan tâm đúng mức đến việc học của con em mình dẫn đến kết quả học tập còn thấp. - Một số học sinh chưa ý thức việc học của mình. 3. Số liệu thống kê Trước khi thực hiện giải pháp, học sinh gặp rất nhiều khó khăn trong quá trình giải toán có lời văn, chất lượng được thống kê như sau: NĂM HỌC: 2008 – 2009 ( trước khi thực hiện biện pháp) Thời điểm Tổng số HS Giỏi Khá Trung bình Yếu TS % TS % TS % TS % Đầu năm 32 5 15,6 12 37,5 10 31,2 5 15,6 Cuối kì I 32 5 15,6 13 40,6 9 28,1 5 15,6 Cuối kì II 32 6 18,8 13 40,6 9 28,1 4 12,5 * Nhận xét: Qua số liệu thống kê cho thấy số học sinh đạt loại giỏi rất ít, số học sinh đạt trung bình và yếu khá cao. Điều đó cho thấy học sinh chưa nắm vững về cách giải toán có lời văn. III. NỘI DUNG ĐỀ TÀI 1. Cơ sở lí luận Toán học có tính trừu tượng, khái quát nhưng đối tượng của toán học lại mang tính chất thực tiễn. Mạch kiến thức cũng được sắp xếp nâng dần từ dễ đến khó, từ đơn giản đến phức tạp, phù hợp với nhận thức của học sinh tiểu học. Các bài toán ở dạng toán “Tìm hai số khi biết tổng (hiệu) và tỉ số của hai số đó” , toán chuyển động đều là những bài toán biết mối quan hệ số và hình. Tổ chức các hoạt động thực hành có nội dung gắn liền với thực tế đời sống để học sinh nhận thấy ứng dụng của toán học trong thực tiễn. Tổ chức học sinh vận dụng kiến thức, kĩ năng toán học để giải quyết những vấn đề trong thực tế và vận dụng những kiến thức, kĩ năng đó vào các môn học khác cùng với việc cập nhật thực tế hóa các dạng toán “Tìm hai số khi biết tổng (hiệu) và tỉ số của hai số đó”, toán chuyển động đều giúp học sinh biết cách giải quyết vần đề thường gặp trong cuộc sống hằng ngày. Các vấn đề này được nêu dưới dạng các bài toán khác nhau hết sức phong phú và đa dạng. Do vậy, việc giải các bài toán này là học sinh huy động toàn bộ kiến thức, kĩ năng và phương pháp mà học sinh đã được học ở tiểu học 2. Nội dung, biện pháp thực hiện các giải pháp của đề tài Nội dung dạy học giải toán có lời văn bằng sơ đồ đoạn thẳng được sắp xếp hợp lí, đan xen phù hợp với quá trình học tập của học sinh ở các mạch số học, hình học, đại lượng và đo đại lượng . Nội dung được xây dựng theo định hướng chủ yếu giúp học sinh rèn luyện phương pháp giải toán ( phân tích đề toán , tìm cách giải quyết vấn đề ( bài toán) và trình bày bài giải); giúp học sinh có khả năng diễn đạt( nói và viết) khi muốn nêu “ tình huống” trong bài toán , trình bày được “ cách giải” bài toán , biết viết “câu lời giải” và “phép tính giải”. Khi hướng dẫn học sinh giải toán “Tìm hai số khi biết tổng (hiệu) và tỉ số của hai số đó, toán chuyển động đều bằng phương pháp sơ đồ đoạn thẳng thì ngay từ đầu phần tóm tắt bài toán giáo viên nên kết hợp với câu hỏi để hướng dẫn học sinh, từ đó các bài toán sau học sinh có thể tự mình tóm tắt bài toán. Hướng dẫn học sinh vẽ sơ đồ, biểu diễn các dữ liệu đúng, rõ ràng. Đồng thời khi tóm tắt bài toán xong nên cho học sinh nhìn vào sơ đồ nêu lại đề toán. học sinh đọc được đề toán qua sơ đồ chính xác là các em đã hiểu được đề toán. v Tổ chức dạy học giải toán cho học sinh Điều chủ yếu của dạy học toán ở tiểu học là giúp học sinh tự tìm hiểu được mối quan hệ giữa cái đã cho và cái phải tìm trong điều kiện bài toán mà thiết lập được các phép tính số học tương ứng, phù hợp. Để tiến hành được điều đó, ta cần xác định ba mức độ sau đây: - Mức độ thứ nhất: Hoạt động chuẩn bị cho việc giải toán - Mức độ thứ hai: Hoạt động làm quen với việc giải toán. - Mức độ thứ ba: Hoạt động hình thành kĩ năng giải toán a) Hoạt động chuẩn bị cho việc giải toán : Việc giải bài toán thực chất là giải hệ thống các bài toán đơn. Do đó việc học kĩ các bài toán đơn chính là công việc chuẩn bị có ý nghĩa cho việc học giải bài toán hợp. b) Hoạt động làm quen với giải toán. Hoạt động này thường được tiến hành theo 4 bước: - Tìm hiểu nội dung bài toán. - Tìm cách giải bài toán. - Thực hiện cách giải bài toán. - Kiểm tra cách giải bài toán. * Tìm hiểu nội dung bài toán Việc tìm hiểu nội dung bài toán (đề toán) thường thông qua việc đọc bài toán dù bài toán cho dưới dạng lời văn hoàn chỉnh hoặc bằng dạng tóm tắt (sơ đồ). Học sinh cần phải đọc kĩ, hiểu rõ đề toán cho biết gì, cho biết điều kiện gì, bài toán hỏi cái gì? Nếu trong bài toán có thuật ngữ nào mà học sinh chưa hiểu rõ, giáo viên cần hướng dẫn để hoc sinh hiểu được nội dung và ý nghĩa của từ đó trong bài toán đang làm, chẳng hạn từ “tiết kiệm”, “năng suất”, “sản lượng” * Tìm tòi cách giải bài toán Hoạt động tìm tòi cách giải bài toán gắn liền với việc phân tích các dữ kiện, điều kiện và câu hỏi của bài toán nhằm xác lập mối quan hệ giữa chúng và tìm được các phép tính số học thích hợp. Hoạt động này thường xuyên xảy ra như sau: - Minh họa bài toán bằng sơ đồ đoạn thẳng. - Lập kế hoạch giải toán nhằm xác định trình tự giải quyết, thực hiện các phép tính số học. Có hai hình thức thể hiện: đi từ câu hỏi bài toán đến các số liệu, hoặc đi từ số liệu đến câu hỏi bài toán. * Thực hiện cách giải bài toán Hoạt động này bao gồm việc thực hiện các phép tính đã nêu trong kế hoạch giải bài toán và trình bày bài giải, học sinh có thể trình bày từng phép tính riêng biệt, trình bày dưới dạng biểu thức gồm vài phép tính. * Kiểm tra cách giải bài toán. Việc kiểm tra này nhằm phân tích cách giải đúng hay sai, sai ở chỗ nào để sửa chữa, sau đó nếu cách giải đúng thì ghi đáp số. Có các hình thức thể hiện sau đây: - Thiết lập tương ứng các phép tính giữa các số tìm được trong quá trình giải với các số đã cho. - Tạo ra bài toán ngược với các bài toán đã cho rồi giải bài toán ngược đó. - Giải các bài tập bằng cách khác. - Xét tính hợp lý của đáp số. c) Hoạt động hình thành và rèn kĩ năng giải toán. Hình thành năng lực khái quát hóa và kĩ năng giải toán, rèn luyện năng lực sáng tạo trong việc học tập có thể tiến hành một vài phép giải sau: - Giải các bài toán nâng dần mức độ phức tạp trong mối quan hệ giữa số đã cho và số phải
File đính kèm:
sang_kien_kinh_nghiem_su_dung_so_do_doan_thang_trong_day_hoc.pdf