SKKN Phương pháp tìm tham số để hàm số biến thiên trên một miền
Trong các bài toán ở trường phổ thông, bài toán tìm điều kiện để hàm số biến thiên trên 1 khoảng cho trước thường gặp trong các kỳ thi mà phương pháp là học sinh thường sử dụng kiến thức tam thức bậc 2 và so sánh nghiệm với 1 số thực theo chương trình cũ ,nhưng khi cải cách sách theo chương trình chuẩn và nâng cao thì không học định lý đảo dấu tam thức bậc 2 và so sánh 1 số thực với các nghiệm phương trính bậc 2 nên học sinh lúng túng và giải rất khó khăn loại bài toán này.
Trong quá trình giảng dạy và nghiên cứu tài liệu, cùng học hỏi đồng nghiệp tôi mạnh dạn trình bày “Phương pháp giải bài toán tìm tham số để hàm số biến thiên trên một miền cho trước “
Bạn đang xem tài liệu "SKKN Phương pháp tìm tham số để hàm số biến thiên trên một miền", để tải tài liệu gốc về máy hãy click vào nút Download ở trên
Tóm tắt nội dung tài liệu: SKKN Phương pháp tìm tham số để hàm số biến thiên trên một miền

SÁNG KIẾN KINH NGHIỆM PHƯƠNG PHÁP TÌM THAM SỐ ĐỂ HÀM SỐ BIỀN THIÊN TRÊN MỘT MIỀN Họ và tên tác giả: Ngô –Phúng Chức vụ: TTCM Tổ Toán-Tin Sở GD-ĐT Ninh Thuận TRƯỜNG THPT CHU VĂN AN ---------------- CỘNG HÒA Xà HỘI CHỦ NGHĨA VIỆT NAM Độc lập – Tự do – Hạnh phúc -------------------------------------- A. ĐẶT VẤN ĐỀ: rong các bài toán ở trường phổ thông, bài toán tìm điều kiện để hàm số biến thiên trên 1 khoảng cho trước thường gặp trong các kỳ thi mà phương pháp là học sinh thường sử dụng kiến thức tam thức bậc 2 và so sánh nghiệm với 1 số thực theo chương trình cũ ,nhưng khi cải cách sách theo chương trình chuẩn và nâng cao thì không học định lý đảo dấu tam thức bậc 2 và so sánh 1 số thực với các nghiệm phương trính bậc 2 nên học sinh lúng túng và giải rất khó khăn loại bài toán này.Trong quá trình giảng dạy và nghiên cứu tài liệu,cùng học hỏi đồng nghiệp tôi mạnh dạn trình bày “Phương pháp giải bài toán tìm tham số để hàm số biến thiên trên một miền cho trước “ B. QUÁ TRÌNH THỰC HIỆN: Để học sinh ôn tập , học sinh tiếp thu bài có hiệu quả, kích thích sự tò mò và khám phá vấn đề của học sinh sau tiết dạy thì công việc chuẩn bị cũng như quá trình lên lớp của giáo viên phải chuẩn bị hết sức kỹ lưỡng và tiến hành tuần tự các bước như sau: I/. BƯỚC CHUẨN BỊ: 1/. Hệ thống bài tập và nội dung kiến thức cần truyền đạt: - Sưu tầm các bài toán “bài toán tìm tham số để hàm số biến thiên trên một miền” và đặc biệt là các bài toán có trong các đề thi của một số năm trước. - Chọn một số bài tập tiêu biểu để giải bằng phương pháp này mà gặp khó khăn khi giải phương pháp khác. - Hướng dẫn học sinh mở rộng thành nhiều bài toán mới. - Chuẩn bị hệ thống bài tập về nhà. 2/. Xây dựng phương pháp giải: Bài toán : Tìm tham số m để ( );y f x m= tăng hoặc giảm trên khoảng I Bước 1: - Tập xác định D (Ta phải có I DÌ ) - Định m để ( ); 0f x m¢ ³ hay ( ); 0f x m¢ £ x I" Î -Từ ( ); 0f x m¢ ³ hay ( ); 0f x m¢ £ suy ra ( ) ( )g x f m³ hay ( ) ( )g x f m£ Bước 2: Tìm giá trị lớn nhất – nhỏ nhất của hàm số ( )y g x= trên tập hợp I. - Lập bảng biến thiên của hàm số ( )y g x= trên I. - Từ bảng biến thiên suy ra giá trị lớn nhất và nhỏ nhất - Từ đó suy ra điều kiện tham số. T 3/. Chọn bài tập mẫu giải tại lớp: Bài 1: Tìm m để hàm số y= 3 1 x3-2x2+mx-2 đồng biến trên (-¥ ,1) Bài 2: Tìm m để hàm số y= - 3 1 x3+(m-1)x2+(m+3)x-4 a) Nghịch biến trên ( )2;+¥ b) Đồng biến trên ( )0;3 Bài 3: Tìm m để hàm số y= 2 262 + -+ x xmx nghịch biến trên ( )1;+¥ Bài 4: Tìm m để hàm số y= mx mxmx - ++-+ 1)1(2 2 đồng biến trên ( )1;+¥ 4/. Bài tập về nhà: Bài 1: Tìm m để hàm số y= -x3-3x2+mx+4 nghịch biến trên ( )0;+¥ Bài 2: Cho hàm số ( ) ( )3 23 2 1 12 5 2y x m x m x= - + + + + a) Tìm m để hàm số đồng biến trên khoảng ( )2;+¥ b) Tìm m để hàm số đồng biến trên khoảng ( ); 1-¥ - và ( )2;+¥ Bài 3: Tìm m để hàm số y= 1 32 2 - +- x mxx a) Đồng biến trên ( )3;+¥ b) Nghịch biến trên (-2;0) Bài 4: Tìm m để hàm số y = 2 5 3 x mx x + - - đồng biến trên khoảng ( )1;0- Dụng ý:- Không sử dụng kiến thức tam thức bậc 2 và so sánh nghiệm với các số thực - Kỹ năng sử dụng : ( ); max ( ) x D m g x x D m g x Î ³ " Î Û ³ ( ); min ( ) x D m g x x D m g x Î £ " Î Û £ II/. BƯỚC SOẠN GIẢNG: Bài dạy: Phương pháp giải bài toán tìm tham số để hàm số biến thiên trên một miền cho trước A/. Mục tiêu: 1/. Kiến thức: - Nắm vững định nghĩa và định lý cơ bản tính đơn điệu hàm số học ở bài đầu tiên - Vận dụng cho từng loại hàm số. - Tìm giá trị lớn nhất và nhỏ nhất của hàm số bằng phương pháp đạo hàm 2/. Kỹ năng: - Linh hoạt trong mọi tình huống. - Kỹ năng tìm giá trị lớn nhất và nhỏ nhất của một hàm số 3/. Tư duy: - Phân tích tổng hợp. - Quan hệ biện chứng. - Tính sáng tạo. B/. Chuẩn bị của giáo viên và học sinh: 1/. Giáo viên: - Chuẩn bị các phương pháp. - Bài tập mẫu. - Bài tập tự giải ở nhà. 2/. Học sinh: - Nắm vững trước phương pháp tìm GTLN-GTNN của hàm số - Biết lập bảng biến thiên của các hàm số C/. Hoạt động dạy học: I/. Kiểm tra bài cũ: (5 phút) Câu hỏi: Nêu phương pháp tìm giá trị lớn nhất, nhỏ nhất của hàm một biến: ( )y f x= trên D bằng đạo hàm. Ứng dụng: Tìm giá trị nhỏ nhất của hàm số y = 2 2 3 2 1 x x x + - + trên ( )2;+¥ Giáo viên: Nhận xét và chuyển qua bài mới. II/. Hoạt động trên lớp: Hoạt động của thầy và trò Nội dung ghi bảng Thời gian GV: Sau khi các em đã biết cách tìm giá trị lớn nhất-nhỏ nhất của hàm số một biến bằng phương pháp đạo hàm Tiết học hôm nay giúp các em tìm tham số m để hàm số biến thiên trên 1 miền Bài toán 1: Kiến thức cơ bản: ( ) max ( ) x D m g x x D m g x Î ³ " Î Û ³ ( ) min ( ) x D m g x x D m g x Î £ " Î Û £ GV: ĐK để hàm số đồng biến trên (-¥ ;1) HS: y’³0 ,"xÎ(-¥ ;1) GV: Khi m³ -x2+4x,"xÎ(-¥ ;1) thì m như thế nào ? HS: m³ ( ] ax ;1 M xÎ -¥ g(x) với g(x)= -x2+4x Ta ti ̀m max g(x) "xÎ ( ];1-¥ GV : Gọi học sinh giải Bài toán 1: Tìm m để hàm số : y y= 1 3 x3-2x2+mx-2 đồng biến trên (-¥ ;1) Bài giải: Ta có y’=x2-4x+m Để hàm số đồng biến trên (-¥ ;1) Û y’³0 ,"xÎ(-¥ ;1) Û x2-4x+m³0 ,"xÎ(-¥ ;1) Û m³ -x2+4x,"xÎ(-¥ ;1) Û m³Max g(x) ,"xÎ ( ];1-¥ Tìm GTLNg(x) "xÎ ( ];1-¥ : Ta có g’(x) = -2x+4, Cho g’(x) = 0Û x=2 BBT + 3 -¥ 1 g(x) g'(x) x -¥ Vậy ( ( ) ;1 Max g x x ùúû = Î -¥ g(1)=3 Þm³3 1 phuùt 7 phuùt KẾT LUẬN : Với m³3 thì hàm số đồng biến trên (-¥ ,1) Bài toán 2: GV: Gọi HS giải câu a và GV gợi ý HS: Dự kiến trả lời Û y’£0"xÎ ( )+¥,2 Û -x2+2(m-1)x+m+3£0;"xÎ ( )2;+¥ Û m(2x+1) £x2+2x-3;"xÎ ( )2;+¥ Û m£ 12 322 + -+ x xx ;"xÎ ( )2;+¥ , GV: Bài toán đã cho trở thành Tìm giá trị nhỏ nhất của g(x)= 12 322 + -+ x xx với xÎ ( )2;+¥ GV: Đạo hàm ( )?g x¢ HS: Dự kiến trả lời g’(x)= 2 2 )12( 822 + ++ x xx GV: cho hs lập BBT và kết luận GV: Nhận xét: Bài toán 2: Tìm m để hàm số: y = - 1 3 x3+(m-1)x2+(m+3)x-4 a) Nghịch biến trên ( )2;+¥ b) Đồng biến trên ( )0;3 Bài giải: Ta có y’=-x2+2(m-1)x+m+3 Để hàm số nghịch biến trên ( )2;+¥ Û y’£0;"xÎ ( )2;+¥ Û -x2+2(m-1)x+m+3£0;"xÎ ( )2;+¥ Û m(2x+1) £x2+2x-3;"xÎ ( )2;+¥ Û m£ 12 322 + -+ x xx ;"xÎ ( )2;+¥ , ( vì 2x+1>0"xÎ ( )2;+¥ ) Û m£Min g(x) ;"xÎ [ )2;+¥ Tìm GTNN g(x); " xÎ [ )2;+¥ : Ta có g’(x)= 2 2 )12( 822 + ++ x xx >0;" xÎ [ )2;+¥ BBT: 14 phuùt GV: gọi hs giải câu b và gviên gợi ý GV: Khi m³ 12 322 + -+ x xx ;"xÎ ( )0;3 , thì m³Max g(x) hay m³Min g(x) "xÎ [ ]0;3 ? HS: m³Max g(x) ;"xÎ [ ]0;3 GV: Cho học sinh tìm Max g(x);"xÎ [ ]0;3 và kết luận m? Bài toán 3: GV: Tính y’ 2 + 1 +¥ g(x) g'(x) x +¥ Vậy [ ) ( ) 2; Min g x xÎ +¥ =g(2)=1 Þm£1 Kết luận : Với m£1 thì hàm số nghịch biến trên ( )2;+¥ b) Để hàm số đồng biến trên ( )0;3 Û Û y’³0;"xÎ ( )0;3 Û m³ 12 322 + -+ x xx ;"xÎ ( )0;3 , (vì 2x+1>0;"xÎ ( )3,0 ) Û m³Max g(x) ;"xÎ [ ]0;3 : Tìm GTLN g(x) " xÎ [ ]0;3 Với g(x) = 12 322 + -+ x xx BBT 0 - ¥ + 12 7 3- 3 g(x) g'(x) x Vậy ( ) 0;3 Max g x x é ùê úë û = Î g(3) = 7 12 Þm³ 7 12 Kết luận : Với m³ 7 12 thì hàm số đồng biến trên ( )0;3 Bài toán 3: Tìm m để hàm số : HS: y’= 2 2 )2( 144 + ++ x mxmx GV: Hsố nghịch biến trên ( )1;+¥ Û ? GV: Đặt g(x) = xx 14 14 2 + - m£ xx 14 14 2 + - ;"xÎ ( )1;+¥ khi m£ Ming(x) hay m£ Max g(x) ? GV: Bài toán trở thành Tìm giá trị nhỏ nhất của g(x) trên [ )1;+¥ GV: Lập bảng biến thiên của g(x) trên [ )1;+¥ HS: Lập BBT và kết luận giá trị m cần tìm Bài toán 4: GV: Hướng dẫn và gọi học sinh giải tương tự các bài toán trên HS: Giải và sau đó lớp nhận xét GV: Nêu điều kiện hàm số đồng biến y= 2 6 2 2 mx x x + - + nghịch biến trên ( )1;+¥ Bài giải: Ta có y’= 2 2 )2( 144 + ++ x mxmx Để hàm số nghịch biến trên ( )1;+¥ Û Û mx2+4mx+14£ 0;"xÎ ( )1;+¥ Û m(x2+14x) £ -14 ;"xÎ ( )1;+¥ Û m£ xx 14 14 2 + - ;"xÎ ( )1;+¥ Û m£ Ming(x) ;"xÎ [ )1;+¥ Tìm GTNN g(x); " xÎ [ )1;+¥ Ta có g’(x) = 22 )14( )7(28 xx x + + Cho g’(x)=0 Û x=-7 Bảng biến thiên: 1 - ¥ + 14 15 - +¥ g(x) g'(x) x +¥ Vậy ) ( ) 1; Min g x x éêëÎ +¥ =g(1) = 14 15 - Þ m£ 14 15 - Kết luận: Với m£ 14 15 - thì hàm số nghịch biến trên ( )1;+¥ Bài toán 4: Tìm m để hàm số : y = 22 (1 ) 1x m x m x m + - + + - đồng biến trên ( )1;+¥ Bài giải: Ta thấy : y’= 2 22 )( 1242 mx mmmxx - --+- 8phuùt 8 phút trên ( )1;+¥ ? Đặt g(x) = 2 22 4 2 1x mx m m- + - - Hãy tìm Min g(x)"xÎ [ )+¥,1 với m£1 ? Để hàm số đồng biến trên ( )1;+¥ Û ( ) 2 2( ) 2 4 2 1 0 1; 1 g x x mx m m x m ì = - + - - ³ " Î +¥ï í £ïî Û [ )( ) 0; 1; 1 Ming x x m ì ³ " Î +¥ í £î ( *) Tìm GTNN g(x); "xÎ [ )+¥,1 với m£1 Ta có g’(x) =4(x-m) , Cho g’(x) =0Û x=m Bảng biến thiên: 1 - ¥ + +¥ +¥ g(x) g'(x) x 2 6 1m m- + Vậy Min g(x) " xÎ [ )1;+¥ với m£1 là : g(1)=m2-6m+1 ( *) Û î í ì £ ³+- 1 0162 m mm Û 3 2 2m £ - Kết luận , Với 3 2 2m £ - thì hàm số đồng biến trên ( )1;+¥ II/. Củng cố và dặn dò: (2 phút) - Từ phương pháp tìm giá trị lớn nhất và nhỏ nhất của hàm số. Bài học hôm nay giúp các em nắm được một số cách tìm giá trị tham số để hàm số đồng biến hay nghịch biến trên 1 miền mà không sử dụng dấu tam thức bậc 2 - Các em phải tự bản thân nỗ lực và rèn luyện thêm ♣♣ Bài tập về nhà. Bài 1: Tìm m để hàm số y= -x3-3x2+mx+4 nghịch biến trên ( )0;+¥ Bài 2: Cho hàm số ( ) ( )3 23 2 1 12 5 2y x m x m x= - + + + + c) Tìm m để hàm số đồng biến trên khoảng ( )2;+¥ d) Tìm m để hàm số đồng biến trên khoảng ( ); 1-¥ - và ( )2;+¥ Bài 3: Tìm m để hàm số y= 1 32 2 - +- x mxx a) Đồng biến trên ( )+¥,3 b) Nghịch biến trên (-2,0) Bài 4: Tìm m để hàm số y = 2 5 3 x mx x
File đính kèm:
skkn_phuong_phap_tim_tham_so_de_ham_so_bien_thien_tren_mot_m.pdf